Multiple spins systems

AX system

Calculate the coupling constant ${}^{1}J({}^{31}P^{77}Se)$ to one decimal place, the chemical shift in Hz of phosphorus in molecules containing ${}^{77}Se$, and this shift in ppm, to two decimal places.

1(a) ${}^{1}J({}^{31}P^{77}Se) = 760.6 \text{ Hz}$ 1(b) $v_{P}({}^{77}Se) = 4415.6 \text{ Hz}$ 1(c) $v_{P}({}^{77}Se) = 36.34 \text{ ppm}$

AB system

Question: The four lines of the ³¹P AB spectrum shown above are at

18906.223, 18679.424, 18280.477, 18053.680 Hz.

1. Calculate v_A , v_B and J_{AB} in Hz, all to one decimal place. $J_{AB} = 226.8$ Hz; $v_M = 18479.95$ Hz (152.1 ppm); $\delta_{AB} = 583.20$ Hz (4.80 ppm) $v_A = v_M - \delta_{AB}/2 = 18188.35$ Hz (149.70 ppm) $v_B = v_M + \delta_{AB}/2 = 18771.55$ Hz (154.50 ppm)

ABX system

Chemical shift of the AB systems

121.2; 115.7; 108.1; 102.7; 99.3; 89.8; 86.3; 76.7

An ABX system will consists in two superimposed AB sub-spectra, with the same J_{AB}

All you need to do is to find the two AB sub-spectra + and -

- 1. Find the value of ${}^{2}J_{AB} = 13.1 \text{ Hz}$
- 2. Solve the AB system for each quartet.

c₋ = (5+3)/2 = 103.7

$$\Delta v_{ab-} = \delta_{-} = \sqrt{(7-1)(5-3)} = 17.5$$

c₋ $\pm \delta_{-}/2 = 103.7 \pm 8.76 = 112.5, 94.9$
c₊ = (6+4)/2 = 96.25

 $\Delta v_{ab+} = \delta_{+} = \sqrt{(8-2)(6-4)} = 22.43$ c₊ ± $\delta_{+}/2 = 96.25 \pm 11.21 = 107.5, 85.0$

At this stage, we know one of the bold lines is **a**, and the other **b**, but *we do not know which is which.* Similarly for the thin lines. 3. Compare the two solution you have found.

- 4. Cite some arguments to choose between both. See Lecture slide 8-13
- 5. The two lines having small intensity are combination lines and decrease in intensity as v_A - v_B increases. Their intensity is $\sin^2(\phi + -\phi -)$ for an intensity of 1 for the external lines of the X system.
 - a. ϕ + and ϕ can be calculated from the formula $\sin^2 \phi = J/2C$ (see slide #54) In the solution below D = C

b. Give the calculated intensity of the two combinations lines considering the two solutions obtained before and conclude.

Solution 1	Solution 2
$\Phi_{1+} = 0.5 \arcsin(J_{AB}/2D_{+})$	$\Phi_{2^+} = \Phi_{1^+}$
= 0.5arcsin(13.0/26.0) = 15.0	= 15.0
$\Phi_{1-} = 0.5 \operatorname{arcsin}(J_{AB}/2D_{-})$	$\Phi_{2-} = 90-\Phi_{1-}$
= 0.5arcsin(13.0/21.9) = 18.2	= 90-18.2 = 71.8
$i_{10} = i_{11} = \cos^2(\Phi_{1+} - \Phi_{1-})$	$i_{10} = i_{11} = \cos^2(\Phi_{2+} - \Phi_{2-})$
$=\cos^2(15.0 - 18.2) = 0.997$	= cos ² (15.0 - 71.8) = 0.30
$i_{14} = i_{15} = \sin^2(\Phi_{1+} - \Phi_{1-})$	$i_{14} = i_{15} = \sin^2(\Phi_{2+} - \Phi_{2-})$
= sin ² (15.0 - 18.2) = 0.003	$= \sin^2(15.0 - 71.8) = 0.70$
arcsin = si	n ⁻¹

1. $v_A = 100.00 \text{ Hz}$

2. ν_B = 100 Hz and J_{AB} = 100 Hz

AA'XX' system

In strict AA'XX' systems spectra are given by pairs of different species:

For the molecule 7, the ¹⁹F spectrum shows 10 lines with the following chemical shifts in Hz at: 276.2; 268.1; 247.0; 236.4; 235.0; 222.7; 221.8; 211.7; 189.8; 181.3.

$ K = J_{AA'} + J_{XX'} $	"J" of one ab quartet
$ L = J_{AX} - J_{AX} $	"δ" of both ab quartets
$ M = J_{AA'} - J_{XX'} $	"J" of other ab quartet
$ N = J_{AX} + J_{AX} $	"doublet"

If we make the reasonable assumption that $J_{\text{FF}} > J_{\text{HH}}$ and J_{HF} (trans) > J_{HF} (cis) we get the following values:

- 1. Determine N = 35.3 Hz
- 2. Measure K (41.2 and 41.4 Hz) and M (31.7 Hz and 32.0 Hz).
- 3. Calculate L from the formulae given in equation 7 For K L = 33.8 Hz and for L = 34.2 Hz.
- 4. Calculate $J_{AA'}$ and $J_{XX'}$ by summing and subtracting K and M. $J_{AA'} = (K+M)/2 = 36.5 \text{ Hz}; J_{XX'} = (K-M)/2 = 4.7 \text{ Hz}$
- 6. Calculate J_{AX} and $J_{AX'}$ by summing and subtracting L and N. $J_{AX} = (N+L)/2 = 34.7 \text{ Hz}; J_{AX'} = (N-L)/2 = 0.7 \text{ Hz}$

Problem Set - NMR IV - corrections

 δ 4.13, dq, J = 11, 7 δ 4.08, dq, J = 11, 7

